

UMT 1302 –
MATHEMATICS FOR CHEMISTRY, MATHEMATICS FOR CHEMISTRY - I

Date: 20-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

	Answer ALL the Questions -	(10 x 1 = 10)
1.	Answer the following	
a)	Define saddle point.	
b)	List any three series expansions used to solve infinite series.	
c)	Find the integration of $\frac{x}{x^2+1}$ with respect to x .	
d)	Recall and write the expansion of $\cos n\theta$.	
e)	Define Binomial distribution.	
2.	Fill in the blanks	
a)	The derivative of $\log_e(e^x x)$ is recognized as _____.	
b)	The expansion of $(1-x)^n$ can be stated as _____.	
c)	Bernoulli's formula for integration is _____.	
d)	If $x = \cos\theta + i\sin\theta$, then $x^n - \frac{1}{x^n}$ can be identified as _____.	
e)	The formula for repeated rank correlation is _____.	

SECTION A - K2 (CO1)

	Answer ALL the Questions	(10 x 1 = 10)
3.	MCQ	
a)	The formula for polar subnormal is (i) $2 \frac{d\theta}{dr}$ (ii) $\frac{dr}{d\theta}$ (iii) $(-1) \frac{d\theta}{dr}$ (iv) $\frac{d\theta}{dr}$	
b)	The series $\frac{\frac{1}{1!} + \frac{1}{3!} + \dots}{\frac{1}{2!} + \frac{1}{4!} + \dots}$ is equal to (i) $\frac{e+1}{e-1}$ (ii) $\frac{e+1}{e+2}$ (iii) $\frac{e-1}{e+1}$ (iv) $\frac{e+2}{e-1}$	
c)	The value of $(i)^{96}$ is: (i) 1 (ii) -1 (iii) -i (iv) i	
d)	A correlation between x and y is said to be uncorrelated if (i) $\gamma(x, y) = -1$ (ii) $\gamma(x, y) = +1$ (iii) $\gamma(x, y) = 0$ (iv) None of the above	
e)	The value of $\int_0^{\frac{\pi}{2}} \cos^6 x dx$ is: (i) $\frac{5}{32}$ (ii) $\frac{5\pi}{32}$ (iii) $\frac{7\pi}{32}$ (iv) $\frac{7}{32}$	
4.	True or False	
a)	Polar subtangent is given by $r \frac{d\theta}{dr}$.	
b)	The function $\tan x$ is an odd function.	

c) Logarithmic series is a finite series.
 d) The terms are alternatively positive and negative in the expansion of $\cos n\theta$.
 e) Correlation coefficient $r(x, y)$ lies between 0 and 1.

SECTION B - K3 (CO2)

Answer any TWO of the following

(2 x 10 = 20)

5. Show that the parabolas $y^2=4(x+1)$ and $y^2=36(9-x)$ cut orthogonally

6. State and prove any three properties of definite integrals.

7. Show that $\sin^7 \theta = \frac{-1}{64}(\sin 7\theta - 7\sin 5\theta + 21\sin 3\theta - 35\sin \theta)$.

8. Ten competitors in a musical test were ranked by the three judges A, B and C in the following order:

Ranks by A	1	6	5	10	3	2	4	9	7	8
Ranks by B	3	5	8	4	7	10	2	1	6	9
Ranks by C	6	4	9	8	1	2	3	10	5	7

Using rank correlation method, relate which pair of judges has the nearest approach to common likings in music?

SECTION C – K4 (CO3)

Answer any TWO of the following

(2 x 10 = 20)

9. Show that in the curve $r\theta=a$, the polar subtangent is constant and in the curve $r=a\theta$, the polar subnormal is constant.

10. Select suitable formula and find the expansion of $\cos 6\theta$.

11. Determine the sum to infinity of the series using exponential series expansion

$$\frac{1}{1!} + \frac{1+5}{2!} + \frac{1+5+5^2}{3!} + \frac{1+5+5^2+5^3}{4!} + \dots$$

12. Calculate the correlation coefficient between advertisement cost (in thousands) and sales (in lakhs) as per the data given below:

Cost	39	65	62	90	82	75	25	98	36	78
Sales	47	53	58	86	62	68	60	91	51	84

SECTION D – K5 (CO4)

Answer any ONE of the following

(1 x 20 = 20)

13. Discuss the maxima and minima of the function $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$.

14. (a) Point out the appropriate property of finite integral and evaluate $\int_0^{\frac{\pi}{2}} \log \sin x dx$.
 (b) Evaluate: $\int \frac{(x+7)}{x^2+4x+13} dx$. (10+10)

SECTION E – K6 (CO5)

Answer any ONE of the following

(1 x 20 = 20)

15. (a) Determine the angle of intersection of the cardioids $r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$.
 (b) Is $\log \sqrt{12} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) \cdot \frac{1}{4} + \left(\frac{1}{4} + \frac{1}{5}\right) \cdot \frac{1}{4^2} + \left(\frac{1}{6} + \frac{1}{7}\right) \cdot \frac{1}{4^3} + \dots$ Justify your answer. (10+10)

16. Determine the equations of two lines of regression for the following data.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

Also, obtain the estimate of X for Y=70.

\$\$\$\$\$\$\$\$\$\$\$\$